Pressure switch Model PS01

Applications

- Hydraulics and pneumatics

■ Steel

- Power
- Special purpose machine

Special features

- Diaphragm-sealed piston sensor and diaphragm
- High static pressure
- Field adjustable setpoint
- Robust design

Description

These high quality pressure switches have been developed especially for safety-critical applications. High quality of the product with established systems and manufacturing process will ensure reliable monitoring of your plant.

Rugged in construction, supreme in performance PS01 pressure switches are designed as cost effective solutions to meet a variety of applications in oil, gas, power, steel and petrochemical industries.

The sensing element consists of a time-proven diaphragm sealed piston affording high integrity, reliable switching and a very high overload protection. Variety of combinations in features are available to make it versatile.

For low ranges, diaphragm is used as a measuring element.

Fig. top: Pressure switch, model W1 weatherproof Fig. bottom: Pressure switch, model F1 flameproof

Standard version

Switch enclosure

- W1: Aluminium pressure die cast weatherproof as per IS/IEC 60529
- F1: GR style aluminium pressure die cast, weatherproof and flameproof to Gr.IIA, IIB or IIC as per IS/IEC 60079

Repeatability of the setpoint (note 4)

$\pm 1.0 \%$ FSR

Permissible ambient temperature

$-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$

Permissible medium temperature

- $-20^{\circ} \mathrm{C} \ldots+110^{\circ} \mathrm{C}$ for SS and Buna-N
- $-20^{\circ} \mathrm{C} \ldots+95^{\circ} \mathrm{C}$ for Neoprene
- $-20^{\circ} \mathrm{C}$... $+130^{\circ} \mathrm{C}$ for EPDM
- $-20^{\circ} \mathrm{C} \ldots+200^{\circ} \mathrm{C}$ for Silicone

Process connection

■ 1/4" NPT(F) direct

- Other connections through adaptor

Measuring element

- 316L SS diaphragm sealed piston for high ranges (standard)
- Buna-N diaphragm for low ranges (standard)

Wetted parts

■ 316 SS standard (high ranges)

- Aluminium standard (low ranges)

■ Monel® optional (high ranges)

Sealing

- Nitrile standard

■ EPDM / Teflon® / Viton® optional, depending on setting range and operating conditions

Ranges

Several ranges from -1 ... +700 bar

Switching contacts with microswitch

1 x SPDT or 2 x SPDT (single pole double throw)

Switching function (notes 10)

Instrument quality snap acting microswitch

On-off differential

- Fixed (standard)
- Wideband adjustable for low ranges in weatherproof enclosure only

Maximum working pressure

Refer table 1

Electrical connection

■ 1/2" NPT(F) single entry standard
■ Dual entry on request

Ingress protection

IP66

Scale accuracy (note 6)

$\pm 5 \%$ FSR

Mounting

Panel / wall / on-line / 2" pipe

Conformity

Generally to BS 6134:1991

Weight

■ Weatherproof: approx. 1.3 Kg
■ Flameproof: approx. 2.0 Kg

Ordering matrix

Options: Refer table 4

Remarks

■ Weatherproof gasket: Nitrile gasket standard and EPDM on request for corrosive environment

- For special requirements, which is not listed in the above ordering matrix, will be indicated as Code ' Z ' at the end of ordering code in quotation.

Table 1: Range code and availability

Range code	Range	Fixed (F)	Adjustable (A)	Maximum working pressure
High ranges, measuring element diaphragm sealed piston				
B02	-1 ... 1.5 bar	\checkmark	\times	15
B88	-1 ... 7 bar	\checkmark	\times	27
B42	0.25 ... 1.6 bar	\checkmark	\times	27
B43 *	0.4 ... 2.5 bar	\checkmark	\times	27
B44 *	1 ... 6 bar	\checkmark	\times	27
B45 *	1.6 ... 10 bar	\checkmark	\times	70
B46 *	2.5 ... 16 bar	\checkmark	\times	70
B37 *	4 ... 25 bar	\checkmark	\times	110
B39 *	$10 . . .40$ bar	\checkmark	\times	110
B47 *	$10 . .100 \mathrm{bar}$	\checkmark	\times	155
B48	7 ... 160 bar	\checkmark	\times	1000
B49	$25 . .250$ bar	\checkmark	\times	1000
B50	50... 400 bar	\checkmark	\times	1000
B51	$100 . .700 \mathrm{bar}$	\checkmark	\times	1000
Low ranges, measuring element diaphragm				
M11	0 ... 2.5 mbar	\checkmark	\times	0.5
M36	0.5 ... 5 mbar	\checkmark	\checkmark	0.5
M37	1 ... 10 mbar	\checkmark	\checkmark	0.5
M38	$2.5 \ldots 15 \mathrm{mbar}$	\checkmark	\checkmark	0.5
M39	2.5 ... 25 mbar	\checkmark	\checkmark	0.5
M41	5 ... 50 mbar	\checkmark	\checkmark	0.5
M45	7.5 ... 75 mbar	\checkmark	\checkmark	0.5
M46	$10 . .100 \mathrm{mbar}$	\checkmark	\checkmark	0.5
M57	$20 . . .200 \mathrm{mbar}$	\checkmark	\checkmark	0.5
M47	40 ... 400 mbar	\checkmark	\checkmark	1
B25	0.2 ... 1 bar	\checkmark	\checkmark	4
B24	0.16 ... 1.6 bar	\checkmark	\checkmark	4
B30	0.4 ... 4 bar	\checkmark	\checkmark	7
M08	-5 ... 0 mbar	\checkmark	\checkmark	0.5
M06	-10 ... 0 mbar	\checkmark	\checkmark	0.5
M04	-20 ... 0 mbar	\checkmark	\checkmark	0.5
M03	-25 ... 0 mbar	\checkmark	\checkmark	0.5
M01	-50 ... 0 mbar	\checkmark	\checkmark	0.5
M49	-100 ... 0 mbar	\checkmark	\checkmark	0.5
M09	-2.5 ... +2.5 mbar	\checkmark	\times	0.5
M07	-10 ... +10 mbar	\checkmark	\checkmark	0.5
M05	-20 ... +20 mbar	\checkmark	\checkmark	0.5
M02	$-50 \ldots+50 \mathrm{mbar}$	\checkmark	\checkmark	0.5

* Optional MWP 600 bar is available

Table 2: Switch code, rating and availability (note 10)

Switch code		Contact version	AC rating	DC rating in Ampere					
SPDT	DPDT			Resistive			Inductive		
				220V	110V	24V	220 V	110V	24V
D	DD	General purpose	15A 250, 125V	0.2	0.4	2.0	0.02	0.03	1.0
W *	WW *	General purpose	15A 250, 125V	0.3	0.6	10	0.05	0.1	4.0
5	55	General purpose	5A 250, 125V	0.2	0.4	4.0	0.2	0.4	3.0
9	99	Hermetically sealed, inert gas filled with Silver alloy contact	1A 115V, 400 Hz	N.A	N.A	3.0	N.A	N.A	1.0
G	GG	Hermetically sealed, inert gas filled with gold plated contact	N.A	N.A	N.A	1.0	N.A	N.A	0.25

N.A - Not available

- Applicable only for adjustable differential model

Table 3: Electrical entry

Size	Single entry		Dual entry	
	W1	F1	W1	F1
1/2" NPTF	A	A	N	N
Through connector				
7 pin plug	C	---	---	---
* Cable gland available on request				

Note:

- All pin connectors housing material are of aluminium alloy
- In explosionproof pin connectors are not applicable.
- Cable gland available on request

Table 4: Options

Details	Code
Optional maximum working pressure	S5
Chemical seal *	S1
Ammonia service	SA
Oxygen service	SO
NACE preparation	SC
Blow-out disc **	S8
Seal 'O' ring - Viton *	OV
Seal 'O' ring - EPDM *	OE
Seal 'O' ring - Teflon *	OT
EPDM cover gasket for weatherproof enclosure W1	EW
Applicable for high ranges only Not applicable for flameproof	

Switching differential data for high ranges

Range code	Range in bar	On-off differential in bar						Maximum working pressure	
		Standard maximum working pressure			Optional maximum working pressure				
		D	5	9 / G	D	5	9/G	Standard	Optional
B02	-1 ... 1.5	0.10	0.25	0.45	\times	\times	\times	15	\times
B88	-1... 7	0.30	0.35	4.0	\times	\times	\times	27	\times
B42	0.25 ... 1.6	0.15	0.15	0.15	\times	\times	\times	27	\times
B43	0.4 ... 2.5	0.15	0.15	0.15	0.30	0.50	0.50	27	600
B44	1 ... 6	0.20	0.35	0.40	0.45	0.70	0.75	27	600
B45	1.6 ... 10	0.25	0.50	0.80	0.60	1.00	1.20	70	600
B46	2.5 ... 16	0.30	0.60	1.00	0.60	1.20	2.00	70	600
B37	4 ... 25	1.00	1.20	2.30	1.00	2.00	4.00	110	600
B39	$10 . . .40$	1.30	1.70	3.50	1.80	2.60	5.00	110	600
B47	$10 . .100$	2.25	3.50	5.00	3.50	5.70	8.00	155	600
B48	7 ... 160	5.25	9.00	10	\times	\times	\times	1000	\times
B49	$25 . .250$	10	10	25	\times	\times	\times	1000	\times
B50	50 ... 400	18	20	35	\times	\times	\times	1000	\times
B51	$100 . .700$	25	25	50	\times	\times	\times	1000	\times

- Above differential table is applicable for weatherproof and flameproof enclosures
- To arrive differential for DPDT arrangement apply multiplication factor 1.6
- Tabulated differential value is achievable at midscale
- Differential would be twice at upper limit of the range

Switching differential data for low ranges with 316L SS diaphragm

Range code	Range	Weatherproof switch enclosure							Flameproof switch enclosure					
		on-off differential in mbar												
		Fixed						Adjustable	Fixed					
		D		5		9/G		W	D		5		$9 / \mathrm{G}$	
Positive ranges														
M11	0 ... 2.5 mbar	1.0		1.0		\times		\times	1.1		1.3		\times	
M36	0.5 ... 5 mbar	1.2		1.2		\times		\times	1.4		1.8		\times	
M37	1 ... 10 mbar	1.4		1.4		\times		4 ... 6	1.4		1.8		\times	
M38	2.5 ... 15 mbar	1.5		1.5		\times		5... 9	1.6		2.3		\times	
M39	2.5 ... 25 mbar	1.6		1.6		5		$6 . .15$	2.3		2.5		7	
M41	5 ... 50 mbar	1.8		1.9		7		6 ... 30	2.3		3.3		8	
M45	7.5 ... 75 mbar	2.2		2.4		7		$7 . .45$	2.6		3.6		8	
M46	$10 . .100 \mathrm{mbar}$	2.6		2.8		8		$10 . . .60$	3		4		8.5	
M57	$20 . . .200$ mbar	40		40		50		$25 . .80$	40		50		50	
M47	$40 . . .400 \mathrm{mbar}$	60		65		70		$70 . . .240$	50		70		75	
B25	0.2 ... 1 bar	80		85		125		$115 . . .600$	70		125		130	
B24	0.16 ... 1.6 bar	100		100		150		160 ... 960	90		150		175	
B30	0.4 ... 4 bar	130		135		200		300 ... 2400	135		200		220	
Negative ranges														
M08	-5 ... 0 mbar	1.2		1.3		\times		\times	1.2		2.2		\times	
M06	-10 ... 0 mbar	1.4		1.8		\times		4 ... 6.0	1.8		3.0		\times	
M04	-20 ... 0 mbar	1.6		2.8		7		$5 . . .12 .0$	2.2		4.6		7	
M03	-25 ... 0 mbar	2.0		3.0		8		$6 . . .15 .0$	3.0		5.0		8	
M01	-50 ... 0 mbar	3.0		3.6		10		$10 . .30 .0$	4.0		6.0		10	
M49	-100 ... 0 mbar	3.4		4.2		12		$15 . .50 .0$	5.0		7.0		12	
Compound ranges														
		$\begin{aligned} & \text { in +ve } \\ & \text { ranges } \end{aligned}$	$\begin{aligned} & \text { in -ve } \\ & \text { ranges } \end{aligned}$	$\begin{aligned} & \text { in +ve } \\ & \text { ranges } \end{aligned}$	$\begin{aligned} & \text { in -ve } \\ & \text { ranges } \end{aligned}$	$\begin{aligned} & \text { in +ve } \\ & \text { ranges } \end{aligned}$	$\begin{aligned} & \text { in -ve } \\ & \text { ranges } \end{aligned}$		$\begin{aligned} & \text { in +ve } \\ & \text { ranges } \end{aligned}$	$\begin{aligned} & \text { in -ve } \\ & \text { ranges } \end{aligned}$	$\begin{aligned} & \text { in }+ \text { ve } \\ & \text { ranges } \end{aligned}$	$\begin{aligned} & \text { in -ve } \\ & \text { ranges } \end{aligned}$	$\begin{aligned} & \text { in +ve } \\ & \text { ranges } \end{aligned}$	$\begin{aligned} & \text { in -ve } \\ & \text { ranges } \end{aligned}$
M09	-2.5 ... +2.5 mbar	1.0	1.4	1.0	1.3	\times	\times	x	1.1	1.6	1.2	2.0	\times	\times
M07	-10 ... +10 mbar	1.2	1.5	1.3	2.0	\times	\times	$7 . .10$	1.3	2.2	1.6	3.0	\times	\times
M05	-20 ... +20 mbar	1.4	2.0	1.5	3.0	5	8	$7 . . .20$	1.6	3.0	2.8	4.0	6	8
M02	-50 ... +50 mbar	2.0	3.0	2.2	4.0	6	10	$9 \ldots 50$	2.2	4.0	3.0	6.0	7	10

- To arrive differential for DPDT arrangement apply multiplication factor 1.8

Switching differential data for low ranges with elastomer diaphragm

Range code	Range	Weatherproof switch enclosure							Flameproof switch enclosure					
		on-off differential in mbar												
		Fixed						Adjustable	Fixed					
		D		5		$9 / \mathrm{G}$		W	D		5		9/G	
Positive ranges														
M11	0 ... 2.5 mbar	1.0		1.0		\times		\times	1.0		1.1		\times	
M36	0.5 ... 5 mbar	1.4		1.2		\times		\times	1.5		1.6		\times	
M37	1 ... 10 mbar	1.5		1.2		\times		3 ... 6	1.6		1.6		\times	
M38	2.5 ... 15 mbar	1.5		1.2		\times		4 ... 9	1.6		2.1		\times	
M39	2.5 ... 25 mbar	1.5		1.5		5		$6 . .15$	1.6		2.3		6.5	
M41	5 ... 50 mbar	1.5		1.6		6		7 ... 30	2.0		2.9		7.0	
M45	7.5 ... 75 mbar	1.6		1.8		6		$10 . . .45$	2.3		3.2		7.0	
M46	10 ... 100 mbar	1.5		2.0		8		$12 . . .60$	2.7		3.6		10	
M57	$20 . . .200$ mbar	15		20		40		$25 . . .80$	27		35		50	
M47	40 ... 400 mbar	20.0		30		60		$60 . . .240$	36		40		70	
B25	0.2 ... 1 bar	50		60		100		100 ... 600	60		90.0		120	
B24	0.16 ... 1.6 bar	70		60		150		150 ... 960	80		90.0		170	
B30	$0.4 \ldots 4$ bar	120		140		200		$200 . . .2400$	130		135.0		220	
Negative ranges														
M08	-5 ... 0 mbar	1.2		1.1		\times		\times	3		2.0		\times	
M06	-10 ... 0 mbar	1.4		1.5		\times		3 ... 6	8		2.7		\times	
M04	-20 ... 0 mbar	1.5		2.3		7		4 ... 12	2.2		4.1		8	
M03	-25 ... 0 mbar	1.6		2.5		8		$5 \ldots 15$	3.0		4.5		10	
M01	-50 ... 0 mbar	2.0		3.0		10		5.5 ... 30	4.0		5.4		12	
M49	-100 ... 0 mbar	2.5		3.5		11		$10 . . .50$	5.0		6.3		13	
Compound ranges														
		in +ve ranges	$\begin{aligned} & \text { in -ve } \\ & \text { ranges } \end{aligned}$	in +ve ranges	$\begin{aligned} & \text { in -ve } \\ & \text { ranges } \end{aligned}$	in +ve ranges	$\begin{aligned} & \text { in -ve } \\ & \text { ranges } \end{aligned}$		in +ve ranges	$\begin{aligned} & \text { in -ve } \\ & \text { ranges } \end{aligned}$	in +ve ranges	$\begin{aligned} & \text { in -ve } \\ & \text { ranges } \end{aligned}$	in +ve ranges	in -ve ranges
M09	-2.5 ... +2.5 mbar	1.0	1.3	0.9	1.3	\times	\times	x	1.1	1.4	1.1	1.8	\times	\times
M07	-10 $\ldots+10 \mathrm{mbar}$	1.1	1.5	1.2	1.6	\times	\times	3.2 ... 10	1.2	2.0	1.4	2.7	\times	\times
M05	-20 ... +20 mbar	1.3	1.5	1.3	2.0	4	6	5.0 ... 20	1.4	2.7	1.8	3.6	6	8.0
M02	-50 ... +50 mbar	1.5	2.0	1.5	3.0	6	8	$10 . . .50$	2.0	3.6	2.7	5.4	8	12

[^0]
Notes

1. Gr.IIA and IIB of IS/IEC 60079-1 is equivalent to NEC CL.1, Div.1, Gr.C and D. Gr.IIC of IS/IEC 60079-1 is equivalent to NEC CL.1, DIV.1, Gr.A and B.
2. Style W1 is weatherproof only when all entries and joint faces are properly sealed. Style F1 is flameproof only when cover ' O ' ring is retained in position and proper FLP cable gland is used. It is recommended to procure cable glands along with F1 instruments to avoid neglect of it while installation
3. Intrinsic Safety (Exi) - Pressure switches are classified as simple apparatus as they neither generate nor store energy. Hence pressure switches in weatherproof enclosures also may be used in intrinsically safe systems without certification provided the power source is certified Intrinsically Safe. Because of the low voltages and currents it is recommended to use gold contact and / or sealed contacts.
4. Accuracy and Repeatability are not different for all blind pressure switches. A shift of $\pm 2 \%$ may be observed in setpoint when pressure falls from full static pressure. Settings will also shift with varying temperature
5. The instrument is calibrated in the mounting position depicted in the drawing. Mounting in any other direction will cause a minor range shift, especially in low and compound ranges. Ranges above 1 bar will not experience this shift.
6. A pressure switch is a switching device and not a measuring instrument eventhough it has a scale in W1 enclosure to assist setting. For this reason, Test Certificates will not contain individual ON-OFF switching values at different scale readings. Maximum differential obtained alone will be declared, besides other specifications.
7. Select working range of the instrument such that the set value lies in the mid 35% of the range i.e., between 35% and 70% of range span.
8. For switching differential values please refer Differential table. Switching differentials furnished are nominal values under test conditions at mid-scale and will vary with range settings and operating conditions.
9. On and off settings should not exceed the upper or lower range value.
10. DPDT action is achieved by two SPDT switches synchronised to practical limits i.e., $\pm 2 \%$ of FSR. Deadband for DPDT contacts are higher than that of SPDT as force required to actuate the contacts are more. Please refer respective range table for exact values.
11. Fluid Temperature: A pressure switch when connected to the process is not subjected to through flow and therefore is not fully exposed to the fluid temperature. Use of adequate length of impulse piping will greatly reduce excessive heating of the sensing element. For e.g., connection of 75 mm of 12 mm dia impulse piping will reduce water temperature of $100^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ at an ambient temperature of $50^{\circ} \mathrm{C}$. Consult sales for piping nomogram for different temperatures.
12. Ambient temperature range: PS01 suitable for operating within a range of ambient temperature from $-10^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$ provided the process does not freeze within this range. Below $0^{\circ} \mathrm{C}$, precautions should be taken in humid atmospheres to prevent frost formation inside the instrument from jamming the mechanism. Occasional escalation beyond this range are possible but accuracy might be impaired. The microswitch is the limiting factor which should never exceed the limits $-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$.
13. Ensure that impulse pipework applies no stress on sensing element housing and use spanners to hold pressure port/housing when connections are made.

Dimensions in mm

Version PS01-W1

High range direct or panel mouning

High range 2" pipe mouning

Low range surface mouning

Dimensions in mm

Version PS01-F1

High range direct or panel mouning

High range 2" pipe mouning

Low range surface mouning

Ordering information

Model / Sensing element, Wetted parts / Range code / Differential / Switch code and rating / Electrical entry /
Mounting / Mounting material / Options

[^1]Switzer data sheet PS-PS01 • 10/2016

Switzer Process Instruments Pvt. Ltd.
128 SIDCO North Phase, Ambattur Estates,
Chennai 600050
Tel. +91 4426252017 / 2018 / 4991 / 4324
sales@switzerprocess.co.in
www.switzerprocess.co.in

[^0]: - To arrive differential for DPDT arrangement apply multiplication factor 1.3

[^1]: © 09/2016 Switzer Process Instruments Pvt. Ltd., all rights reserved.
 The specifications given in this document represent the state of engineering at the time of publishing.
 We reserve the right to make modifications to the specifications and materials.

